Федеральное государственное бюджетное образовательное учреждение высшего образования «Дальневосточный государственный университет путей сообщения»

«УТВЕРЖДАЮ»

	Директор института/
	декан факультета
	подпись, Ф.И.О.
	«»20 г.
	_
ФОНД ОЦЕНОЧНЫХ СРЕ	ЕДСТВ
дисциплины <u>Инструментальные и расчётные методь</u>	и мониторинга техносферы
полное наименование дисциплины	
для направления подготовки (специальности) 20.04.0)1 <u>Техносферная безопасность</u>
код и наименование направления подготовки (сп	ешиальности)
	oqualishoom)
Составитель к.б.н., доцент, Неудачин А.П.	
учёная степень, должность, Ф.И.О., под	ПИСЬ
Обсуждена на заседании кафедры (ПЦК) <u>Техносфер</u>	ная безопасность
полное наименова	ние кафедры-разработчика
«» 20 г., протокол №	
Зав. кафедрой (председатель ПЦК)	
Ф.И.О., подпись	
Обсуждена на заседании методической комиссии по	родственным направлениям и
специальностям*	
полное наименование	
«» 20 г., протокол №	
Председатель (методист**)	

Ф.И.О., подпись

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ для проведения промежуточной аттестации обучающихся по дисциплине «Инструментальные и расчётные методы мониторинга техносферы»

Фонд оценочных средств разрабатывается с учётом всех форм проведения промежуточной аттестации.

При изучении дисциплины «Инструментальные и расчётные методы мониторинга техносферы», приобретаются следующие компетенции:

- способность анализировать, оптимизировать и применять современные информационные технологии при решении научных задач (ПК-10);
- способность использовать современную измерительную технику, современные методы измерения (ПК-12).

Так как данные компетенции приобретаются через освоение целого ряда дисциплин и прочих видов учебной работы (практики), при промежуточной аттестации осуществляется проверка не самих компетенций, а соотнесенных с ними результатов обучения, которые формируются в ходе изучения данной дисциплины.

Результаты обучения по данной дисциплине — это перечень знаний, умений и навыков (владений), которые были приобретены в ходе её изучения. Результаты обучения являются измеримыми и их достижение является подтверждением того, что запланированный этап формирования компетенции достигнут.

Форма промежуточной аттестации – зачёт.

Перечень компетенций и этапы их формирования в процессе освоения образовательной программы по дисциплине Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания		Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности,	Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта, характеризующих этапы			
Компетенция	Этап	Показатель оценивания	Критерий оценивания	Шкала оценивания	характеризующих этапы формирования компетенций в процессе освоения образовательной программы	формирования компетенций
ПК-10. Способность анализировать, оптимизировать и применять современные информационные	1 уровень	Знать: виды мониторинга; Уметь: использовать расчётные методы в мониторинге техносферы; Владеть: навыками анализа при ведении мониторинга техносферы.	Уровень усвоения материала, предусмотренного программой курса (высокий, хороший, достаточный,	Отлично: 1. Уровень усвоения материала, предусмотренного программой курса - высокий	Вопросы к зачету (1-55), задачи к зачёту (1-10).	Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта
технологии при решении научных задач	2 уровень	Знать: области применения методов мониторинга техносферы; Уметь: анализировать результаты мониторинга; Владеть: опытом оптимизации при решении научных задач.	материал не освоен). сферы; ьтаты причинно- следственных связей	2. Уровень раскрытия причинно- следственных связей — высокий. 3. Качество ответа (логичность, убежденность, общая		деятельности приведены в стандарте ДВГУПС СТ 02-28-14 «Формы, периодичность и порядок текущего контроля успеваемости
	3 уровень	Знать: современные информационные технологии; Уметь: представлять результаты мониторинга на графиках и картах; Владеть: навыками применения современных информационных технологий.	отсутствует). Качество ответа (логичность, убежденность, общая эрудиция) (на высоком уровне, а	эрудиция) – на высоком уровне. Хорошо: 1. Уровень усвоения материала, предусмотренного программой курса –		и промежуточной аттестации».
ПК-12. Способность использовать современную измерительную технику, современные методы измерения	1 уровень	Знать: современное оборудование, применяющееся в мониторинге техносферы; Уметь: выбирать методы изучения техносферы; Владеть: навыком работы с современной измерительной техникой.	де, достаточно высоком уровне, на низком уровне, ответ	не, на низком не, ответ причинно- следственных связей — достаточно высокий. 3. Качество ответа (логичность, убежденность, общая	Вопросы к зачету (1- 55), задачи к зачёту (1-10).	Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности приведены в стандарте ДВГУПС СТ 02-28-14
	2 уровень	Знать: статистические методы, применяющиеся при обработке результатов мониторинга; Уметь: представлять результаты		эрудиция) – на достаточно высоком уровне Удовлетворительно: 1. Уровень усвоения		«Формы, периодичность и порядок текущего контроля успеваемости и промежуточной

	мониторинга;	материала,	аттестации».
	Владеть: навыком выбора	предусмотренного	
	необходимой точности измерения.	программой курса –	
3 уровень	Знать: особенности ведения	на достаточном	
3 уровень	расчётов основных параметров	уровне.	
	мониторинга;	2. Уровень раскрытия	
	мониторинга, Уметь: выбирать приборную базу,	причинно-	
	соответствующую целям и задачам	следственных связей	
	исследований;	– низкий.	
	Владеть: навыками владения	3. Качество ответа	
		(логичность,	
	современными измерительными методами.	убежденность, общая	
	мстодами.	эрудиция) — логика	
		ответа соблюдена,	
		убежденность в	
		правильности ответа	
		– низкая	
		Неудовлетворительн	
		0:	
		1. Уровень усвоения	
		материала,	
		предусмотренного	
		программой курса –	
		материал не освоен.	
		2. Уровень раскрытия	
		причинно-	
		следственных связей	
		- отсутствует.	
		3. Качество ответа	
		(логичность,	
		убежденность, общая	
		эрудиция) – ответ	
		нелогичен, либо ответ	
		отсутствует"	

Вопросы к зачёту по дисциплине

«Инструментальные и расчётные методы мониторинга техносферы»

направлены на формирование следующих компетенций:

ПК-10 Способность анализировать, оптимизировать и применять современные информационные технологии при решении научных задач.

ПК-12 Способность использовать современную измерительную технику, современные методы измерения.

- 1. Инструментальные и расчётные методы мониторинга техносферы: цель, задачи, специфика дисциплины.
- 2. Виды мониторинга. Цели и задачи мониторинга техносферы.
- 3. Методы и оборудование для анализа загрязнения атмосферы.
- 4. Использование инструментальных и расчётных методов при гидрологических исследованиях. Определение параметров створа: ширина, глубины, скорости течения.
- 5. Использование инструментальных и расчётных методов при гидрологических исследованиях. Методы расчёта расхода воды в створе.
- 6. Методы расчета вероятностей и статистический анализ. Количественный анализ опасностей.
- 7. Инструментальные методы определения загрязняющих веществ в гидросфере. Расчёт показателей растворённого органического вещества и индекса загрязнённости воды.
- 8. Расчётные методы оценки радиационной опасности и параметров защиты от внешнего облучения.
- 9. Технические средства и методы контроля уровня загрязнения техносферы.
- 10. Инструментальные и расчётные методы в анализе прогноза строительства гидротехнических сооружений.
- 11. Взаимодействие человека и техносферы. Количественные показатели. Примеры.
- 12. Применение хроматографических методов в мониторинге техносферы. Разновидности, области применения.
- 13. Использование электрохимических методов в мониторинге техносферы. Разновидности, области применения.
- 14. Оптические методы в мониторинге техносферы. Разновидности, области применения.
- 15. Методы контроля энергетических загрязнений.
- 16. Основы термодинамики реакций осаждения, как одной из причин изменения скорости миграции веществ в техносфере.
- 17. Основы термодинамики реакций комплексообразования, как одной из причин изменения скорости миграции веществ в техносфере.
- 18. Основы термодинамики реакций окисления-восстановления, как одной из причин изменения скорости миграции веществ в техносфере.
- 19. Инструментальные и расчётные методы идентификации опасностей. Оценка последствий их воздействия на человека и техносферу.
- 20. Инструментальные и расчётные методы в определении допустимых уровней вредных воздействий.
- 21. Определение расчетным или инструментальным путем пространственно-временных и количественных характеристик вредных воздействий.
- 22. Контактные и неконтактные методы мониторинга техносферы.

- 23. Инструментальные и расчётные методы в мониторинге литосферы, методы анализа почв: ГОСТ 22.1.02-97.
- 24. Общие характеристики миграции химических элементов: механическая, физико-химическая, биогенная и техногенная миграция.
- 25. Ионная концепция миграции. Почему она не всегда достаточна для характеристики миграции элементов?
- 26. От чего зависит величина механической денудации, как она измеряется.
- 27. Применение инструментальных методов для идентификации окислительной и восстановительной обстановки.
- 28. Значения правила произведения растворимости для мониторинга техносферы.
- 29. Значение ионной концепции в мониторинге, физико-химические параметры ионов.
- 30. Охарактеризовать фотосинтез с количественных позиций.
- 31. Количественные характеристики фито-, зоо- и микробиомассы. Продукция живого вещества.
- 32. Обосновать, почему разложение органических веществ процесс энтропийный.
- 33. Числовое выражение окислительно-восстановительной зональности биокосных систем?
- 34. Анализ и оценка техногенных рисков.
- 35. Методы мониторинга энергетических загрязнений.
- 36. Технические средства и методы мониторинга загрязнения техносферы.
- 37. Методы измерения и мониторинг уровня радиации.
- 38. Обработка информации мониторинга техносферы: ГИС-технологии, базы данных, моделирование.
- 39. Мониторинг атмосферных примесей: ГОСТ 22.1.02-97.
- 40. Необходимость экспресс-анализа в техносфере.
- 41. Контактные и неконтактные методы мониторинга техносферы.
- 42. Методы анализа при ведении техносферного мониторинга.
- 43. Виброметрия: методы и процедура измерения вибрации, зоны вибрационного загрязнения.
- 44. Инструментальные и расчётные методы в мониторинге чрезвычайных ситуаций: задачи, функции, принципы проведения: ГОСТ Р 22.3.05-96.
- 45. Метрологические аспекты обработки результатов мониторинга: пределы измерений, погрешности, доверительные интервалы при больших и малых выборках, чувствительность метода.
- 46. Способы обработки и представления информации в системах мониторинга: ГИС-системы, банки данных, картографическая информация.
- 47. Основы мониторинга информационных потоков в техносфере.
- 48. Посты наблюдений за загрязнением атмосферы: категории постов, выбор местоположения, приоритетные загрязнители: ГОСТ Р 22.1.02-97.
- 49. Инструментальные методы мониторинга ксенобиотиков в техносфере.
- 50. Посты наблюдений за загрязнением гидросферы: категории постов, выбор местоположения, приоритетные загрязнители: ГОСТ 22.1.02-97, Р 52.24.309-2004.
- 51. Статистика при получении и обработке результатов мониторинга: регрессионный анализ, метод наименьших квадратов.
- 52. Методы расчета содержания СО и других загрязнителей на урбанизированных территориях.

- 53. Инструментальные методы при мониторинге миграции тяжёлых металлов в техносфере.
- 54. Достоинства и недостатки инструментальных и расчётных методов мониторинга техносферы.
- 55. История и перспективы инструментальных и расчётных методов мониторинга техносферы.

Задачи к зачёту по дисциплине

«Инструментальные и расчётные методы мониторинга техносферы»

Рассмотрим и изучим методику выполнения измерений (МВИ) перманганатной окисляемости в пробах питьевых, природных и сточных вод титриметрическим методом по ПНД Ф 14.1: 2:4.154-99.

Методика аттестована (свидетельство № 224.01.02.151/2004) для диапазона перманганатной окисляемости от 0,25 до 100 мгО/дм³.

Метрологические характеристики методики приведены в таблицах 1 и 2.

Таблица 1

Диапазон измеряемых концентраций, относительные показатели повторяемости, воспроизводимости правильности и точности методики при доверительной вероятности P = 0,95

Диапазон измерений, мг/дм ³	Показатель повторяемости (относительное среднеквадратическое отклонение повторяемости), s_r , %	Показатель воспроизводимости (относительное среднеквадратическое отклонение воспроизводимости) s_R ,%	Показатель правильности (границы относительной систематической погрешности при вероятности $P = 0.95$), $\pm \delta_c$, %	Показатель точности (границы относительной погрешности при вероятности $P=0.95$), $\pm \delta$, %
от 0,25 до 2,0 вкл.	7	10	4	20
св. 2,0 до 100 вкл.	3	5	2	10

Таблица 2

Пределы повторяемости и воспроизводимости результатов измерений при P=0.95

Диапазон анализируемых содержаний, мг/дм ³	Предел повторяемости (для двух результатов измерений), r, %	Предел воспроизводимости (для двух результатов измерений), R,%
от 0,25 до 2,0 вкл.	20	28
св. 2,0 до 100 вкл.	8	14

Величину перманганатной окисляемости, выраженную в ${\rm MrO/дm^3}$, рассчитывают по формуле:

$$X = \frac{(V_1 - V_2) \cdot K \cdot 0.01 \cdot 8 \cdot 1000 \cdot K_p}{V}$$

где V_1 — объем раствора перманганата калия (0,01 моль/дм³ эквивалента), израсходованного на титрование исследуемой пробы, см³; V_2 — объем раствора перманганата калия (0,01 моль/дм³ эквивалента), израсходованного на титрование холостой пробы, см³; K — поправочный коэффициент к титру раствора перманганата калия; V — объем пробы, взятой для анализа (100), см³; K_p — коэффициент разбавления пробы; 8 — эквивалент кислорода.

Если поправочный коэффициент к титру перманганата калия имеет значение от 0,995 до 1,005, то при вычислении результатов его можно не учитывать.

Обращаем внимание, что величина перманганатной окисляемости выражается в мг атомарного (О) кислорода

Нам необходимо провести определённые расчеты по этой методике. На что следует обратить внимание.

1. Диапазон измерения.

При получении результатов следует обращать внимание на диапазон (ы) измерения и невозможность сконцентрировать исходную пробу. Так, при «выходе» значений за нижний предел диапазона измерений – A, в Протоколе испытаний записывается: < A, мг/дм³.

Выдача результатов, лежащих ниже предела обнаружения является распространённой **ошибкой**. Такой результат не может быть достоверен, т.к. МВИ гарантирует метрологические характеристики только в определённом диапазоне!

Предположим, что были получены значения, лежащие выше верхнего предела МВИ. В этом случае следует применить разбавление пробы, для чего рассчитать коэффициент разбавления таким образом, чтобы предполагаемы результаты вошли в пределы диапазона методики. После чего провести анализ разбавленной пробы и при расчётах учесть разбавление. Обычно данный порядок указывается в МВИ.

2. Проверка приемлемости результатов испытаний

При проведении испытаний широко распространено получение двух результатов (параллельных определений). При этом приемлемость результатов может проверяться для условий повторяемости или повторяемости и воспроизводимости одновременно.

Повторяемость (сходимость) — это близость результатов испытаний одного и того же объекта, полученных по одной методике в одной лаборатории одним оператором на одном и том же оборудовании за короткий промежуток времени.

Предел (норматив) повторяемости $r = 2.8s_r$, где s_r – среднеквадратическое отклонение, полученное в условиях повторяемости.

Воспроизводимость – это близость результатов испытаний одного и того же объекта, полученных по единым методикам с применением различных экземпляров оборудования разными операторами в разное время, т.е. в разных лабораториях.

Предел воспроизводимости $R = 2.8s_R$ где s_R – среднеквадратическое отклонение, полученное в условиях воспроизводимости.

Численные значения r и R указываются в методах испытаний.

Для проверки приемлемости результатов, которые получены в условиях повторяемости, поступают следующим образом:

Если $|x_1 - x_2| \le r$, где x_1 и x_2 — два результата испытаний, полученные в условиях повторяемости, то окончательный результат равен среднему арифметическому.

Если $|x_1 - x_2| > r$, надо получить ещё два результата, если это приемлемо по

стоимости. Если при этом для четырёх результатов x_{max} - $x_{min} \le CR_{0,95}(4)$, то за окончательный результат берут среднее арифметическое этих четырёх результатов. Если для четырёх результатов испытаний x_{max} - $x_{min} \le CR_{0,95}(4)$, то за окончательный результат берут медиану этих результатов. Здесь $CR_{0,95}(4)$ — критический диапазон для уровня вероятности 95% и n=4.

$$CR_{0.95}(n) = f(n) \cdot s_r = f(n) \cdot r/2.8$$

Коэффициенты f(n) до n = 5 приводятся в табл. 3.

Таблица 3

n	f(n)
2	2,8
3	3,3
4	3,6
5	3,9

Если испытания дорогостоящие, и по двум результатам $|x_1 - x_2| > r$, надо получить ещё один результат. Если по трём результатам $x_{max} - x_{min} \le CR_{0,95}(3)$, то за окончательный результат берут среднее арифметическое этих трёх результатов. Если $x_{max} - x_{min} > CR_{0,95}(3)$ и невозможно получить четвёртый результат , в качестве окончательного результата принимают медиану трёх результатов.

Медиана — число, которое является серединой множества чисел; половина чисел имеет значение большие, чем медиана, половина — меньше. Если N — число нечётное, то медиана — центральное число, при N чётном — среднее для центральной пары

3. Оформление результатов испытаний

В МВИ есть раздел, где предлагается представлять результат количественного анализа в протоколе испытаний (анализа) в следующем виде:

$$X_{cp} \pm \Delta$$
 (P = 0,95), где Δ — показатель точности методики. Δ = 0,01 · δ , где δ — границы относительной погрешности.

Внимание! Числовое выражение результата анализа и характеристика погрешности должны содержать одинаковое количество цифр после запятой.

Пример.

При определении перманганатной окисляемости в природной воде по ПНД Φ 14.1:2.4.154-99 получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

$$V_1 - 3.3 \text{ cm}^3$$

$$V_2 - 3.5 \text{ cm}^3$$

0,1 см³ перманганата калия израсходован на титрование холостой пробы.

Титрование проводили свежеприготовленным раствором перманганата калия (K=1).

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

Решение

По формуле расчёта величины перманганатной окисляемости получаем два результата:

 $X_1 - 2,6$ мгО/дм³

 $X_2 - 2,8$ мгО/дм³

Данные значения входят в диапазон измерения. Приступаем к оценке приемлемости.

Результаты измерений приемлемы, если выполняется условие:

$$|X_1 - X_2| \le r$$

Так как г (предел повторяемости относителен) дан в %, то необходимо рассчитать его от среднего значения, т.е.:

$$|X_1 - X_2| \le r \cdot \frac{X_1 + X_2}{2} \cdot 0.01$$

$$|X_1 - X_2| = 0.2;$$

$$|X_1 - X_2| = 0.2;$$
 $\mathbf{8} \cdot \frac{2.6 + 2.8}{2} \cdot 0.01 = 0.216$

8 – предел повторяемости по табл. 2 МВИ.

0,2 ≤ 0216, условие приемлемости выполняется. За результат принимается среднее значение измерений

$$X_{\rm cp} = 2,7$$

Результат в протоколе должен выглядеть, как: $X_{\rm cp} \pm \Delta$.

$$\Delta = 0.01 \cdot \delta \cdot X_{cp} = 0.01 \cdot \mathbf{10} \cdot 2.7 = 0.27$$

10 – показатель точности по табл. 1 МВИ

В протоколе итоговый результат должен выглядеть следующим образом: 2,7±0,3, т.к. среднее значение и характеристика погрешности должны иметь одинаковое количество цифр после десятичного знака.

Задачи

При определении перманганатной окисляемости в природной воде по ПНД Ф 14.1:2.4.154-99 получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

$$V_1 - 3.7 \text{ cm}^3$$

$$V_2 - 3.5 \text{ cm}^3$$

 $0,1\,\,\mathrm{cm}^3$ перманганата калия израсходован на титрование холостой пробы.

Титрование проводили свежеприготовленным раствором перманганата калия (K=1).

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

При определении перманганатной окисляемости в питьевой воде по ПНД Ф 14.1:2.4.154-99 получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

 $V_1 - 0.7 \text{ cm}^3$

$$V_2 - 0.8 \text{ cm}^3$$

0,1 см³ перманганата калия израсходован на титрование холостой пробы.

Титрование проводили свежеприготовленным раствором перманганата калия (K=1).

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

При определении перманганатной окисляемости в питьевой воде по ПНД Φ 14.1:2.4.154-99 получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

$$V_1 - 0.5 \text{ cm}^3$$

$$V_2 - 0.7 \text{ cm}^3$$

 0.1 см^3 перманганата калия израсходован на титрование холостой пробы.

Титрование проводили свежеприготовленным раствором перманганата калия (K=1). Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

4

При определении перманганатной окисляемости в сточной воде по ПНД Φ 14.1:2.4.154-99 проба предварительно была разбавлена в 5 раз.

Получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

 $V_1 - 6.0 \text{ cm}^3$

 $V_2 - 6.4 \text{ cm}^3$

Титрование проводили свежеприготовленным раствором перманганата калия (K=1). Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

5

При определении перманганатной окисляемости в сточной воде по ПНД Ф 14.1:2.4.154-99 проба предварительно была разбавлена в 4 раза.

Получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

 $V_1 - 5.0 \text{ cm}^3$

 $V_2 - 5.4 \text{ cm}^3$

0,1 см³ перманганата калия израсходован на титрование холостой пробы.

Поправочный коэффициент к титру перманганата калия – 0,99

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

6

При определении перманганатной окисляемости в питьевой воде по ПНД Ф 14.1:2.4.154-99 получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

 $V_1 - 0.4 \text{ cm}^3$

 $V_2 - 0.3 \text{ cm}^3$

0,1 см³ перманганата калия израсходован на титрование холостой пробы.

Титрование проводили свежеприготовленным раствором перманганата калия (K=1).

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

7

При определении перманганатной окисляемости в природной воде по ПНД Φ 14.1:2.4.154-99 получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

 $V_1 - 2.8 \text{ cm}^3$

 $V_2 - 3.0 \text{ cm}^3$

0,1 см³ перманганата калия израсходован на титрование холостой пробы.

Поправочный коэффициент к титру перманганата калия – 0,98

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

Проба предварительно была разбавлена в 10 раз.

Получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

 $V_1 - 3.5 \text{ cm}^3$

 $V_2 - 3.6 \text{ cm}^3$

0,1 см³ перманганата калия израсходован на титрование холостой пробы.

Титрование проводили свежеприготовленным раствором перманганата калия (K=1).

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

8

При определении перманганатной окисляемости в природной воде по ПНД Φ 14.1:2.4.154-99 получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

 $V_1 - 4.8 \text{ cm}^3$

 $V_2 - 5.0 \text{ cm}^3$

0,1 см³ перманганата калия израсходован на титрование холостой пробы.

Поправочный коэффициент к титру перманганата калия – 0,99

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

9

При определении перманганатной окисляемости в сточной воде по ПНД Φ 14.1:2.4.154-99 проба предварительно была разбавлена в 10 раз.

Получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

 $V_1 - 2.8 \text{ cm}^3$

 $V_2 - 3,1 \text{ cm}^3$

0,1 см³ перманганата калия израсходован на титрование холостой пробы.

Титрование проводили свежеприготовленным раствором перманганата калия (К=1).

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.

10

При определении перманганатной окисляемости в сточной воде по ПНД Φ 14.1:2.4.154-99 проба предварительно была разбавлена в 10 раз.

Получены следующие объемы перманганата калия, пошедшего на титрование исследуемой пробы:

 $V_1 - 3.5 \text{ cm}^3$

 $V_2 - 3.6 \text{ cm}^3$

0,1 см³ перманганата калия израсходован на титрование холостой пробы.

Титрование проводили свежеприготовленным раствором перманганата калия (K=1).

Оцените приемлемость результатов перманганатной окисляемости и представьте результаты в протоколе испытаний.